If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-38h=0
a = 1; b = -38; c = 0;
Δ = b2-4ac
Δ = -382-4·1·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-38}{2*1}=\frac{0}{2} =0 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+38}{2*1}=\frac{76}{2} =38 $
| 25x-10=-4(5-3x) | | Y=-250x^2+4000 | | 36=28x | | 2(5c+2)2c=3(2c+3)+7 | | 2x+x+48=90 | | .552=x+1.00276x | | 3(x-4)+2x=9x+16 | | 21=-3x+5x+1 | | 5-3^2x-9=-50 | | 17y-20+16(2y-2)=40-12y | | 3(x-1)^2=27 | | 3^2x+4=27. | | (25x-10)(15x+2)+28=180 | | (x+5)^2+7=43 | | 5d-4=56 | | 2x+5+7x+7=16 | | (-5x+1)(2x+2)=0 | | x2+6x+14=0 | | -1+5b-4=-18 | | 5x+6(2x-2)=10x+8 | | 3z/8+7=-1 | | 5x+4=5+3x | | w/5-13=8 | | 5g(4g-3)=0 | | 7x+x-6=90 | | 4f+51=3f+71 | | 6e-5=3e+28 | | 15=r-6= | | 2d+19=5d+4 | | 5x+14+19x-28=180 | | (-4x+5)(6x+4)=0 | | 8c+3=6c+13 |